

1021_HyperSizer-Methods-Approach-FBD Tab Matrix Math.ppt

Collier Research Corporation Hampton, VA

© 2010 Collier Research Corp.

□ 1st glimpse of HyperSizer Basic

Get familiar with ABD matrix computations

□ 1st glimpse of HyperSizer Basic

Get familiar with ABD matrix computations

□ Why?

HyperSizer smeared stiffness formulation

Outline

- HyperSizer panel stiffness approach
- □ Isotropic plate stiffness relations
- Metallic sheet examples
 - Mechanical loads
 - Thermal loads
 - Superimposed pressure

Panel Stiffness Approach

Panel Stiffness – Technical Approach

- Stiffened panel constitutive equation
 - [A] \rightarrow membrane
 - [D] \rightarrow bending
 - [B] → membrane-bending coupling

$$\begin{bmatrix} \vec{N} \\ \vec{M} \end{bmatrix} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{B} & \mathbf{D} \end{bmatrix} \begin{bmatrix} \vec{\varepsilon} \\ \vec{\kappa} \end{bmatrix} - \begin{bmatrix} \vec{N}^T \\ \vec{M}^T \end{bmatrix}$$

Panel Stiffness - Technical Approach

 Classical Lamination Theory extended to a represent any stiffened cross sectional shape

HyperSizer

Thermoelastic Formulations

Panel Stiffness - Technical Approach

- Classical Lamination Theory extended to a represent any stiffened cross sectional shape
- General panel behaviors, are quantified with:
 - Stiffeness terms[A], [B], [D]
 - Thermal coefficients
 [A^α], [B^α], [D^α]

Free Body Diagram (FBD)

I/ST-SZICollier

Thermoelastic Formulations

Free Body Diagram (FBD)

- Balanced free-body loads
 - **FEA**
 - User-defined input

I/ST-SZICollier

Free Body Diagram (FBD)

- Balanced free-body loads
 - **FEA**
 - User-defined input
- Consistently applied thermoelastic formulations guarantee
 - Equilibrium of forces

I/ST-SZICollier

Isotropic Plate Stiffness Relations

Isotropic Plate Stiffness

Plane Stress Constitutive Equations

Compliance

Isotropic Plate Stiffness

Plane Stress Constitutive Equations

Isotropic Plate Stiffness

Plane Stress Constitutive Equations

ABD Matrix of Isotropic Plate

$$\begin{bmatrix} N_{x} \\ N_{y} \\ N_{s} \\ M_{y} \\ M_{s} \end{bmatrix} = \begin{bmatrix} \frac{Et}{1-v^{2}} & \frac{vEt}{1-v^{2}} & 0 & 0 & 0 & 0 \\ \frac{vEt}{1-v^{2}} & \frac{Et}{1-v^{2}} & 0 & 0 & 0 & 0 \\ 0 & 0 & Gt & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{Et^{3}}{12(1-v^{2})} & \frac{vEt^{3}}{12(1-v^{2})} & 0 \\ 0 & 0 & 0 & \frac{vEt^{3}}{12(1-v^{2})} & \frac{Et^{3}}{12(1-v^{2})} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{Gt^{3}}{12} \end{bmatrix}$$

ABD Matrix of Isotropic Plate

$$\begin{bmatrix} N_{x} \\ N_{y} \\ N_{y} \\ N_{s} \\ M_{x} \\ M_{y} \\ M_{s} \end{bmatrix} = \begin{bmatrix} \frac{Et}{1-v^{2}} & \frac{vEt}{1-v^{2}} & 0 & 0 & 0 & 0 \\ \frac{vEt}{1-v^{2}} & \frac{Et}{1-v^{2}} & 0 & 0 & 0 & 0 \\ 0 & 0 & Gt & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{Et^{3}}{12(1-v^{2})} & \frac{vEt^{3}}{12(1-v^{2})} & 0 \\ 0 & 0 & 0 & \frac{vEt^{3}}{12(1-v^{2})} & \frac{Et^{3}}{12(1-v^{2})} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{Gt^{3}}{12} \end{bmatrix} \begin{bmatrix} \varepsilon_{x}^{o} \\ \varepsilon_{y}^{o} \\ \varepsilon_{y}^{o} \\ \kappa_{x} \\ \kappa_{y} \\ \kappa_{z} \end{bmatrix}$$

ABD Matrix of Isotropic Plate

Membrane

$$A_{11} = A_{22} = \frac{Et}{1 - v^2}$$
$$A_{12} = A_{21} = A_{11}v$$

Bending

$$D_{11} = D_{22} = \frac{Et^3}{12(1-v^2)}$$
$$D_{12} = D_{21} = D_{11}v$$

$$A_{11}^{-1} = A_{22}^{-1} = \frac{1}{Et}$$
$$A_{12}^{-1} = A_{21}^{-1} = -A_{11}^{-1}\nu$$

$$D_{11}^{-1} = D_{22}^{-1} = \frac{12}{Et^3}$$
$$D_{12}^{-1} = D_{21}^{-1} = -D_{11}^{-1}v$$

Examples

Perform several exercises to verify the physics of the ABD matrix in using HyperSizer's operation userdefined loads

- Specified Strain
- Specified Force
- □ Uniform ΔT
- □ Through-Thickness ∆T
- Pressure

Set up for Demo Problem

Copy an Isotropic: 'AL 7075' and rename to 'FBD Example' Set properties $E_c = E_t = 10 \text{ Msi}$ G = 3.846154 Msiv = 0.3 $\alpha = 12^{-6}$

Setup Group sizing bounds thickness equal to .1"

Set Ultimate Load Factor = 1.0

Examples with Isotropic Plates

Isotropic Plate

E = 10 Msi v = 0.3 *G*=3.846154 Msi Plate Thickness, *t* = 0.1'' CTE, $\alpha = 12 \mu in/in$

Membrane

$$A_{11} = \frac{Et}{1 - v^2} = \frac{(10)(0.1)}{0.91}$$
$$= 1.0989 \times 10^6 \text{ lb/in}$$

Bending

$$D_{11} = \frac{Et^3}{12(1-v^2)} = \frac{(10)(0.1)^3}{12(0.91)}$$

= 915.8 lb/in

The Free Body Diagram Tab

• Entry of Loads and Boundary Conditions

Concepts	Design-to Loads	Fa	ilure	Buc	kling	Y	Notes
Variables	FBD	Object	Loads Y	Computed F	Properties Y	Ор	tions
Input (Per Load Case)]
ULTIMATE-MECHANICAL Loa	ad Case #1 "one" (Mechanical	Set #101, Thermal	Set #201)				-
Mechanical Load Set #101 "L	oad Set 101"			Ref Temp		Temp	
C Thermal Load Set #201 "Load	I Set 201"			Pressure	0	TT Grad	
C FEA Loads - Projects Only	Nx, ex Ny, ey	Nxy, yxy	Mx, xx	Му, ку	Mxy, xxy	Qx	Qy
User Loads Applied Unit Va	ilue Load 🔻 Load	▼ Load	▼ Constraine ▼	Constraine 💌	Constraine 💌	Load 🗾 💌	Load 💌
For Strength Analy	/sis Free						
For Buckling Analy	I load						
- Superimposed Loads	Deformation		nt Free Body Dia	gram (Constant F	orces)		
Panel Pressure	🔲 Beam-Column Mome	ents			Q.,	M.ZNY	Ref.
P	<u>ى چەھەمەر 20 مەرىمى</u>					My Nm	Plane
		<u> </u>	<i>_</i>		-	yxy	<u></u>
	ንምት ቶ ት ት _Р ቶ ቶ	* * ****	b M	Mx	² 1 / ^y	A	
	Initial Imperfection				Grad X		- [2 ¹ N ₂
			N _x 2	₩ <u>,</u>	e la		M _{xy}
Zero Out FEA Computed Mo	ments FIXED Boundary Cond	lition 💌 📔 🖌		2-1/			×
Mx My	Qx Qy		·	N _{xy} My	/	a (V length)	
MidSpan 0 0	0 0			Ny Mxy Q	v /	a (X length)	30
	0 0		л а —			b (r length)	30
Free Body Diagram Output (Con	ntrolling Factored Loadcase) —						
Controlling Analysis Load: BUCKL	LING Nx, EX Ny, EY	Nxy, yxy	Mx, xx	Му, ку	Mxy, xy	Qx	Qy
Virtual Loads							
Design-to Deformati	ion lo	0	0	0	0		
		V		v	•		

Ex 1 – Applied ε_x , **Constrained** ε_y

- Input (Per Load Case)										
LIMIT-MECHANICAL Load Cas	#1 "one" (Mecha	anical Set #101,	Thermal Set #20	01)					-	
Mechanical Load Set #101 "Los	d Set 101"				Ref Temp		Temp			
C Thermal Load Set #201 "Load S	I Set 201" Pressure 0 TT Grad									
C FEA Loads - Projects Only	Nx, ex	Ny,εy	Nxy, yxy	Mx, ax	Му, ку	Mxy, xxy	Qx	Qy		
Oser Loads Applied Unit Value	e Deformati 💌	Constraine 💌	Constraine 💌	Constraine 💌	Constraine 💌	Constraine	Load 💌	Load	-	
For Strength Analysi	5 0.001									
For Buckling Analysi	s 0.001									
 Thermal Load Set #201 "Load Set #201 "Load Set #201 "Loads - Projects Only User Loads Applied Unit Value For Strength Analysis For Buckling Analysis 	et 201" Nx, εx e Deformatir 0.001 0.001	Ny, ay Constraine_▼	Nxy, yxy Constraine_▼	Mx, ax Constrain∈ ▼	Pressure My, xy Constraine	0 Mxy, xxy Constrain∈ ▼	TT Grad Qx Load _▼	Qy Load	•	

Ex 1 – Applied ε_x , **Constrained** ε_y

Input (Per Load Case)											
LIMIT MECHANICAL Load Case #	1 ToneT (Mecha	unical Set #101	Thermal Set #20	11)					Ţ		
C Martine Character Ebad Case #	C LADAR	inical Set #101,	mermar Set #20	,1)	Def Terre	[T		<u> </u>		
Mechanical Load Set #101 "Load Set 101" Ref Temp Temp											
	201				Pressure	0	TT Grad				
C FEA Loads - Projects Only	Nx, ex	Νy,εγ	Nxy, yxy	Mx, ax	My, xy	Mxy, xxy	Qx	Qy	_		
User Loads Applied Unit Value	Deformati 💌	Constraine	Constraine	Constraine	Constraine	Constraine	Load 🗾	Load	_		
For Strength Analysis	0.001										
For Buckling Analysis	0.001										

$$Nx = A_{11}\varepsilon_x + A_{12}\varepsilon_y$$

= (1.0989 × 10⁶)(0.001)
= 1098.9

Set Ultimate Factor = 1.0

$$Ny = A_{21}\varepsilon_x = vA_{11}\varepsilon_x$$

= (0.3)(1.0989×10⁶)(0.001)
= 329.67

 Free Body Diagram Output (Contro 	lling Factored	Loadcase)							
Controlling Analysis Lond, CTDENCT	1								~
Controlling Analysis Load: STRENGT	1 NX, εx	Νγ, εγ	Ebxy,	, yxy	MX, XX	My, xy	Mxy, xxy	Qx	Qy
Virtual Loads	1098.9	329.67	0		0	0	0	0	0
Design-to Loads	1098.9	329.67	0		0	0	0	0	0
Design-to Deformation	0.001	0	0		0	0	0		

Ex 2 – Applied N_x, Free N_y

	Input (Per Load Case)												
ſ	**LIMIT-MECHANICAL** Load Case #	≠1 "one" (Mecha	nical Set #101, T	Thermal Set #20)1)					-			
ţ	Mechanical Load Set #101 "Load	Set 101"				Ref Temp		Temp					
ţ	C Thermal Load Set #201 "Load Set 201" Pressure 0 TT Grad												
1	FEA Loads - Projects Only	Nx, ex	Ny,εy	Nxy, γxy	Mx, xx	Му, ку	Мху, аху	Qx	Qy				
(User Loads Applied Unit Value	Load 🔻	Free 🔻	Constraine 🔻	Constraine 🔻	Constraine 🔻	Constraine 🔻	Load 🔻	Load	-			
	For Strength Analysis	1000											
	For Buckling Analysis	1000											

What will the strains look like?

Ex 2 – Applied N_x , Free N_y

-Input (Per Load Case)											
LIMIT-MECHANICAL Load Case :	#1 "one" (Mecha	anical Set #101	, Thermal Set #20	01)				•			
Mechanical Load Set #101 "Load	Set 101"				Ref Temp		Temp				
Thermal Load Set #201 "Load Set 201" Pressure 0 TT Grad											
C FEA Loads - Projects Only	Nx, ex	Ny, sy	Nxy, yxy	Mx, xx	Му, ку	Мху, аху	Qx	Qy			
Over Loads Applied Unit Value	Load 💌	Free 💌	Constraine 🔻	Constraine 🔻	Constraine 💌	Constraine 💌	Load 🔻	Load 💌			
For Strength Analysis	1000										
For Buckling Analysis	1000										

4

$$\varepsilon_x = A_{11}^{-1}N_x + A_{12}^{-1}N_y \qquad A_{11}^{-1} = \frac{1}{Et}$$

$$=\frac{1}{(10)(.1)}(1000)=0.001$$

$$\varepsilon_{y} = A_{21}^{-1}N_{x} + A_{22}^{-1}N_{y} \qquad A_{21}^{-1} = \frac{-\nu}{Et}$$

$$=\frac{-(0.3)}{(10)(.1)}(1000) = -0.0003$$

Controlling Analysis Load: STRENG	Nx, εx	Νγ, εγ	Nxy	y, yxy Mx	, xx My,	xy Mxg	у, кху С	Qx	Qy
Virtual Loads									
Design-to Loads	1000	0	0	0	0	0	0	0)
Design-to Deformation	0.001	-2.999999E-04	0	0	0	0			

Ex 3 – Applied κ_x , Constrained κ_y

										_			
Input (Per Load Case)													
LIMIT-MECHANICAL Load Case #	≠1 "one" (Mecha	inical Set #101,	Thermal Set #	#20)1)				1	-			
Mechanical Load Set #101 "Load	Mechanical Load Set #101 "Load Set 101" Ref Temp Temp												
C Thermal Load Set #201 "Load Set	© Thermal Load Set #201 "Load Set 201" Pressure 0 TT Grad												
C FEA Loads - Projects Only	Nx, ex	Ny, εγ	Nxy, yxy		Mx, xx	My, xy	Mxy, xxy	Qx	Qy				
Oser Loads Applied Unit Value	Free 💌	Free 💌	Constraine	•	Deformatic 💌	Constraine 💌	Constraine 💌	Load 💌	Load	•			
For Strength Analysis					0.01								
For Buckling Analysis					0.01								

What will the loads look like?

Ex 3 – Applied κ_x , Constrained κ_y

Instant (Dec Lond Cocc)					nnut (Per Load Case)												
-Input (Per Load Case)																	
LIMIT-MECHANICAL Load Case #	1 "one" (Mecha	nical Set #101,	Thermal Set #	#20)1)					•							
Mechanical Load Set #101 "Load	Mechanical Load Set #101 "Load Set 101" Ref Temp Temp																
C Thermal Load Set #201 "Load Set 201" Pressure 0 TT Grad																	
C FEA Loads - Projects Only	Nx, ex	Νγ, εγ	Nxy, yxy		Mx, <i>x</i> x	Му, ку	Мху, кху	Qx	Qy								
Oser Loads Applied Unit Value	Free 💌	Free 🔻	Constraine	•	Deformatic 🔻	Constraine 🔻	Constraine 🔻	Load 🔻	Load	-							
For Strength Analysis	For Strength Analysis 0.01																
For Buckling Analysis					0.01												

What will the loads look like?

Ex 3 – Applied K_x **Constrained** K_y

Input (Per Load Case)									
LIMIT-MECHANICAL Load Case #	1 "one" (Mecha	nical Set #101,	Thermal Set #20	01)					-
Mechanical Load Set #101 "Load	Set 101"				Ref Temp		Temp		
C Thermal Load Set #201 "Load Set	201"				Pressure	0	TT Grad		
C FEA Loads - Projects Only	Nx, ex	Ny, ay	Nxy, yxy	Мх, ах	Му, ку	Мху, кху	Qx	Qy	
User Loads Applied Unit Value	Free 💌	Free 💌	Constraine 💌	Deformatic 💌	Constraine 💌	Constraine 💌	Load 💌	Load	-
For Strength Analysis				0.01					
For Buckling Analysis				0.01					

$$Mx = D_{11}\kappa_x + D_{12}\kappa_y$$

= (915.8)(0.01)
= 9.158

 $My = D_{21}\kappa_x = \nu D_{11}\kappa_x$ = (0.3)(915.8)(0.01) = 2.747

Free Body Diagram Output (Controlling Factored Loadcase)													
Controlling Analysis Load: STRENGTH	Nx, ex	Ny, εγ	Nxy, yxy	Mx, xx	Му, ху	Mxy, xxy	Qx	Qy					
Virtual Loads	0	0	0	9.15751	2.74725	0	0	0					
Design-to Loads	0	0	0	9.15751	2.74725	0	0	0					
Design-to Deformation	0	0	0	0.01	0	0							

 \rightarrow

Ex 4 – Applied M_x, Free M_y

Input (Per Load Case)	Input (Per Load Case)													
LIMIT-MECHANICAL Load Case #	1 "one" (Mecha	nical Set #101,	Thermal Set #2	01)				•						
Mechanical Load Set #101 "Load	Mechanical Load Set #101 "Load Set 101" Ref Temp Temp													
Thermal Load Set #201 "Load Set 201" Pressure 0 TT Grad														
C FEA Loads - Projects Only	Nx, ex	Ny,εy	Nxy, yxy	Mx, xx	My, xy	Мху, кху	Qx	Qy						
Over Loads Applied Unit Value	Free 💌	Free 💌	Free 💌	Load 🔫	Free 💌	Constraine 💌	Load 💌	Load 🔻						
For Strength Analysis	For Strength Analysis 100													
For Buckling Analysis				100										

What will the strains look like?

Ex 4 – Applied M_x, Free M_y

Input (Per Load Case)										_		
LIMIT-MECHANICAL Load Case #1 "one" (Mechanical Set #101, Thermal Set #201)												
Mechanical Load Set #101 "Load Set 101" Ref Temp Temp												
C Thermal Load Set #201 "Load Set	C Thermal Load Set #201 "Load Set 201" Pressure 0 TT Grad											
C FEA Loads - Projects Only	Nx, ex	Νγ,εγ	Nxy, yxy	Mx, xx	My, xy		Мху, кху	Qx	Qy			
Oser Loads Applied Unit Value	Free 💌	Free	▼ Free	▼ Load	▼ Free	-	Constraine 💌	Load 💌	Load	•		
For Strength Analysis				100								
For Buckling Analysis				100								

$$\kappa_x = D_{11}^{-1} M_x + D_{12}^{-1} M_y \qquad D_{11}^{-1} = \frac{12}{Et^3}$$

$$=\frac{12}{(10\times10^6)(.1)^3}(100)=0.12$$

$$\kappa_{y} = D_{21}^{-1}M_{x} + D_{22}^{-1}M_{y} \qquad D_{21}^{-1} = \frac{-12\nu}{Et^{2}}$$

$$=\frac{-12(0.3)}{(10\times10^6)(.1)^3}(100)=-0.036$$

	Free Body Diagram Output (Control	ling Factored L	oadcase) ———				_	-			
	Controlling Analysis Load: STRENGTH	Nx.ex	Νν.εν	Nxy, yxy	Mx.ax	My, av	Mx	. KXV	Ox	Ov	
	Virtual Loads				T						
	Design-to Loads	0	0	0	100	0	0		0	0	
	Design-to Deformation	0	0	0	0.12	-3.599999E-02	0				70
~										20	

Ex 4 – Applied M_x, Free M_y

Ex 5 – Thermal: Applied \Delta T Constrained

-Input (Per Load Case)									
			Th						
ULTIMATE-THERMAL Load Case	#1 one (Mech	anical Set #101,	Thermal Set #2	01)					•
C Mechanical Load Set #101 "Load	Set 101"				Ref Temp	100	Temp	200	
Thermal Load Set #201 "Load Set	201"				Pressure		TT Grad	0	٦
C FEA Loads - Projects Only	Nx, ex	Ny, εγ	Nxy, yxy	Mx, ax	My, ay	Мху, аху	Qx.	Qy	
Over Loads Applied Unit Value	Constraine 🔻	Constraine 🔻	Constraine 🔻	Constraine 💌	Constraine 💌	Constraine 💌	Load 💌	Load	-
For Strength Analysis									П
For Buckling Analysis									

What will the loads look like?

 \rightarrow

Positive, negative or zero?

Ex 5 – Thermal: Applied AT Constrained

-Input (Per Load Case)											
ULTIMATE-THERMAL Load Case #1 "one" (Mechanical Set #101, Thermal Set #201)											
C Mechanical Load Set #101 "Load	C Mechanical Load Set #101 "Load Set 101" Ref Temp 100 Temp 200										
Thermal Load Set #201 "Load Set	Thermal Load Set #201 "Load Set 201" Pressure T Grad 0										
C FEA Loads - Projects Only	Νχ, εχ	Νγ,εγ	Nxy, yxy	Мх, ах	Му, ху	Мху, юху	Qx	Qy			
Over Loads Applied Unit Value	Constraine 💌	Constraine 💌	Constraine 💌	Constraine 💌	Constraine 💌	Constraine 💌	Load 🗾 💌	Load	•		
For Strength Analysis											
For Buckling Analysis											

- Free Body Diagram Output (Controlling Factored Loadcase)										
Controlling Analysis Load: BUCKLIN	5 Nx, εx	Ny,εy	Nxy, yxy	Mx, xx	Му, ку	Mxy, xxy	Qx	Qy		
Virtual Loads	-1714.29	-1714.29	0	0	0	0	0	0		
Design-to Loads	-1714.29	-1714.29	0	0	0	0	0	0		
Design-to Deformation	-0.0012	-0.0012	0	0	0	0				
		•								

Ex 5 – Thermal: Applied \Delta T Constrained

									_)
-Input (Per Load Case)									
ULTIMATE-THERMAL Load Case	#1 "one" (Mech	anical Set #101,	Thermal Set #2	01)					-
C Mechanical Load Set #101 "Load	Set 101"				Ref Temp	100	Temp	200	
Thermal Load Set #201 "Load Set	201"				Pressure		TT Grad	0	_
C FEA Loads - Projects Only	Νχ, εχ	Νγ,εγ	Nxy, yxy	Мх, ах	Му, ху	Мху, юху	Qx	Qy	
Over Loads Applied Unit Value	Constraine 💌	Constraine 💌	Constraine 💌	Constraine 💌	Constraine 💌	Constraine 💌	Load 🗾 💌	Load	-
For Strength Analysis									
For Buckling Analysis									

Thermal Strain

$$\varepsilon_x^T = \varepsilon_y^T = \alpha \Delta T$$
$$= (12 \times 10^{-6})(100)$$
$$= 0.0012$$

– Free Body Diagram Output (Contro	lling Factored L	oadcase) ———						
Controlling Analysis Load: BUCKLIN	- Nx, εx	Ny, εγ	Nxy, yxy	Mx, xx	Му, ку	Mxy, xxy	Qx	Qy
Virtual Loads	-1714.29	-1714.29	0	0	0	0	0	0
Design-to Loads	-1714.29	-1714.29	0	0	0	0	0	0
Design-to Deformation	-0.0012	-0.0012	0	0	0	0		
	•							

Ex 5 – Thermal: Applied \DeltaT Constrained

-Input (Per Load Case)									
ULTIMATE-THERMAL Load Case	#1 "one" (Mech	anical Set #101,	Thermal Set #2	01)					•
C Mechanical Load Set #101 "Load	Set 101"				Ref Temp	100	Temp	200	
Thermal Load Set #201 "Load Set	201"				Pressure		TT Grad	0	-
C FEA Loads - Projects Only	Νχ, εχ	Ny,εy	Nxy, yxy	Мх, хх	Му, ку	Mxy, xxy	Qx	Qy	
Over Loads Applied Unit Value	Constraine 💌	Constraine 💌	Constraine 💌	Constraine 💌	Constraine 💌	Constraine 💌	Load 🗾 💌	Load	-
For Strength Analysis									
For Buckling Analysis									

Thermal Strain

$$\varepsilon_x^T = \varepsilon_y^T = \alpha \Delta T$$
$$= (12 \times 10^{-6})(100)$$
$$= 0.0012$$

<u>Strain Actual</u> (Computed Properties Tab)

Design-To Strain

– Free Body Diagram Output (Contro	lling Factored L	oadcase) ———						
Controlling Analysis Load: BUCKLIN	Nx, ex	Ny,εy	Nxy, yxy	Mx, ax	My, xy	Mxy, xxy	Qx	Qy
Virtual Loads	-1714.29	-1714.29	0	0	0	0	0	0
Design-to Loads	-1714.29	-1714.29	0	0	0	0	0	0
Design-to Deformation	-0.0012	-0.0012	0	0	0	0		
		•			•			

Ex 5 – Thermal: Applied \DeltaT Constrained

- Input (Per Load Case)									
ULTIMATE-THERMAL Load Case	#1 "one" (Mech	anical Set #101,	Thermal Set #2	01)					-
C Mechanical Load Set #101 "Load	Set 101"				Ref Temp	100	Temp	200	
Thermal Load Set #201 "Load Set	201"				Pressure		TT Grad	0	
C FEA Loads - Projects Only	Nx, ex	Ny,εy	Nxy, yxy	Mx, xx	Му, ху	Мху, кху	Qx	Qy	
Oser Loads Applied Unit Value	Constraine 💌	Constraine 💌	Constraine 💌	Constraine 💌	Constraine 💌	Constraine 💌	Load 🗾 💌	Load	-
For Strength Analysis									
For Buckling Analysis									

Thermal Strain

$$\varepsilon_x^T = \varepsilon_y^T = \alpha \Delta T$$
$$= (12 \times 10^{-6})(100)$$
$$= 0.0012$$

Strain Actual (Computed Properties Tab)

Design-To Strain

Design-To Force

$$N_x^{Design-To} = A_{11} \varepsilon_x^{Design-To} + A_{12} \varepsilon_y^{Design-To}$$

= $(1.0989 \times 10^6) (-0.0012) + (0.3) (1.0989 \times 10^6) (-0.0012)$
= -1714.3

	- Free Body Diagram Output (Contro	lling Factored L	.oadcase) ———						
	Controlling Analysis Load: BUCKLIN	Nx, ex	Ny,εy	Nxy, yxy	Mx, ax	My, xy	Mxy, xxy	Qx	Qy
	Virtual Loads	-1714.29	-1714.29	0	0	0	0	0	0
	Design-to Loads	-1714.29	-1714.29	0	0	0	0	0	0
	Design-to Deformation	-0.0012	-0.0012	0	0	0	0		
2	010 Collier Research Corporation.				-			-	JUCION

Ex 6 – Thermal: Applied \Delta T, Edges Free

-Input (Per Load Case)									
ULTIMATE-THERMAL Load Case	#1 "one" (M	echanical Set	#101, Thermal S	et #201)					•
C Mechanical Load Set #101 "Load	Set 101"				Ref T	emp 100	Tem	ip 200	
Thermal Load Set #201 "Load Set	201"				Press	ure	πσ	irad 0	
C FEA Loads - Projects Only	Ny, sy	Ny, sy	Nvy, vvy	My, ex	My, sy	Mxy, xxy	Q×	Qy	
User Loads Applied Unit Value	Free	▼ Free	▼ Free	▼ Free	▼ Free	▼ Free	.oad	▼ Load	-
For Strength Analysis									
For Buckling Analysis									
For Strength Analysis For Buckling Analysis									

Х

What will the loads look like?

 \rightarrow

Positive, negative or zero?

Ex 6 – Thermal: Applied Δ **T Free**

-Input (Per Load Case)								
ULTIMATE-THERMAL Load Case #	1 "one" (Mech	nanical Set #	101, Thermal Se	et #201)				-
C Mechanical Load Set #101 "Load S Thermal Load Set #201 "Load Set 2	set 101" 201"				Ref To Press	emp 100 ure	Temp TT Grad	200
 FEA Loads - Projects Only User Loads Applied Unit Value 	Nx,εx Free 💌	Ny,εy Free	Nxy, yxy Free	Mx, <i>x</i> x ▼ Free	My, xy Free	Mxy, xxy ▼ Free	Qx Load	Qy ▼ Load ▼
For Strength Analysis For Buckling Analysis								

ſ	- Free Body Diagram Output (Control	ling Factored L	oadcase) ———						
	Controlling Analysis Load: BUCKLING	Nx, ex	Ny, εγ	Nxy, yxy	Mx, xx	My, xy	Mxy, xxy	Qx	Qy
	Virtual Loads								
	Design-to Loads								
	Design-to Deformation	0	0	0	0	0	0		
L									

Ex 6 – Thermal: Applied Δ **T Free**

Terret (Declared Coop)													
Input (Per Load Case)													
ULTIMATE-THERMAL Load Case	#1 "one" (Med	hanical Set	t #101, T	hermal Set #	‡201)								-
C Mechanical Load Set #101 "Load	Set 101"						Ref Temp	100		Temp		200	
Thermal Load Set #201 "Load Set	201"						Pressure			Π Grad	d	0	
C FEA Loads - Projects Only	Nx, ex	Ny,εy	N	bxy, yxy	Mx, ax		Му, ку	Mxy, xxy		Qx		Qy	
User Loads Applied Unit Value	Free	Free	▼ F	ree	 Free 	-	Free 💌	Free	-	Load	-	Load	-
For Strength Analysis								1				Í	
For Buckling Analysis													
					_								

Thermal Strain

$$\varepsilon_x^T = \varepsilon_y^T = \alpha \Delta T$$
$$= (12 \times 10^{-6})(100)$$
$$= 0.0012$$

- Free Body Diagram Output (Control	ling Factored L	oadcase) ———						
Controlling Analysis Load: BUCKLING	Nx, ex	Ny, εγ	Nxy, yxy	Mx, ax	My, xy	Mxy, xxy	Qx	Qy
Virtual Loads								
Design-to Loads								
Design-to Deformation	0	0	0	0	0	0		
		•	•		•			
2010 Collier Research Corporation								01012

Ex 6 – Thermal: Applied \Delta T Free

-Input (Per Load Case)									
ULTIMATE-THERMAL Load Case	#1 "one" (Me	chanical Set #	≠101, Thermal Se	et #201)					-
C Mechanical Load Set #101 "Load	Set 101"				Ref Tem	p 100	Temp	200	
Thermal Load Set #201 "Load Set	201"				Pressur	2	TT Grad	0	
C FEA Loads - Projects Only	Nx, ex	Ny,εy	Nxy, yxy	Mx, ax	My, xy	Mxy, <i>ix</i> y	Qx	Qy	
C User Loads Applied Unit Value	Free	 Free 	 Free 	▼ Free	 Free 	 Free 	 Load 	 Load 	-
For Strength Analysis									
For Buckling Analysis									

Thermal Strain

$$\varepsilon_x^T = \varepsilon_y^T = \alpha \Delta T$$
$$= (12 \times 10^{-6})(100)$$
$$= 0.0012$$

Strain Actual (Computed Properties Tab)

 Free Body Diagram Output (Controlli 	ing Factored L	oadcase) ———						
Controlling Analysis Load: BUCKLING	Nx, ex	Ny, sy	Nxy, yxy	Mx, xx	My, xy	Mxy, xxy	Qx	Qy
Virtual Loads								
Design-to Loads								
Design-to Deformation	0	0	0	0	0	0		
		•	•		•			
2010 Collier Besserch Corporation								

Ex 6 – Thermal: Applied Δ **T Free**

#1 "one" (Me	chanical Se	t #101, Therr	nal Set #201)					•
Set 101"					Ref Temp	100	Temp	200
t 201"					Pressure		TT Grad	0
Nx, ex	Ny, εγ	Nxy, y	xy Mx, a	c My	(, Ky	Мху, кху	Qx	Qy
Free	▼ Free	▼ Free	▼ Free	▼ Fr	ee 🔻	Free 💌	Load 🔻	Load
	#1 "one" (Me I Set 101" t 201" Nx, Ex Free	#1 "one" (Mechanical Set I Set 101" t 201" Nx, ex Ny, ey Free ▼ Free	#1 "one" (Mechanical Set #101, Therm I Set 101" t 201" Nx, εx Ny, εy Nxy, γ Free Free Free	#1 "one" (Mechanical Set #101, Thermal Set #201) I Set 101" t 201" Nx, εx Ny, εy Nxy, γxy Mx, κ Free Free Free Free Free	#1 "one" (Mechanical Set #101, Thermal Set #201) I Set 101" t 201" Nx, ɛx Ny, ɛy Nxy, yxy Mx, ɛx My Free ▼ Free ▼ Free ▼ Free ▼ Free ▼ Free	#1 "one" (Mechanical Set #101, Thermal Set #201) I Set 101" Ref Temp t 201" Pressure Nx, ɛx Ny, ɛy Nxy, ץxy Mx, ʁx My, ʁy Free ▼ Free ▼ Free ▼ Free ▼ Free ▼	#1 "one" (Mechanical Set #101, Thermal Set #201) I Set 101" t 201" Pressure Nx, εx Ny, εy Nxy, γxy Mx, εx My, κy Mxy, εxy Free ▼ Free ▼ Free ▼ Free ▼ Free ▼ Free ▼ Free ▼	#1 "one" (Mechanical Set #101, Thermal Set #201) Set 101" t 201" Nx, εx Ny, εy Nxy, γxy Mx, xx My, xy Mxy, xxy Qx Free Free Free Free Free Load

$$\varepsilon_x = \varepsilon_y = \alpha \Delta I$$
$$= (12 \times 10^{-6})(100)$$
$$= 0.0012$$

<u>Strain Actual</u> (Computed Properties Tab)

- Free Body Diagram Output (Control	ling Factored L	oadcase) ———						
Controlling Analysis Load: BUCKLING	Nx, ex	Ny, εγ	Nxy, yxy	Mx, ax	Му, ку	Mxy, xxy	Qx	Qy
Virtual Loads								
Design-to Loads								
Design-to Deformation	0	0	0	0	0	0		
				-	•			

Ex 6 – Thermal: Applied Δ **T Free**

–Input (Per Load Case)										
ULTIMATE-THERMAL Load Case #	1 "one" (Mec	hanical Set	#101, Thermal	Set #201)						-
C Mechanical Load Set #101 "Load	Set 101"				Ref 1	emp 1	100	Temp	200	
Thermal Load Set #201 "Load Set #	201"				Pres	sure		TT Grad	i 0	
C FEA Loads - Projects Only	Nx, ex	<u>Ny,εy</u>	Nxy, yxy	Mx, xx	My, xy	N	Лху, юху	Qx	Qy	
User Loads Applied Unit Value	Free 💽	Free	▼ Free	▼ Free	▼ Free	▼ F	ree	Load	Load	-
For Strength Analysis										
For Buckling Analysis										

<u>Strain Actual</u> (Computed Properties Tab)

Design-To Strain

JULGI

Design-To Force

$$N_x^{Design-To} = A_{11} \varepsilon_x^{Design-To} + A_{12} \varepsilon_y^{Design-To}$$
$$= 0.0$$

- Free Body Diagram Output (Control	ling Factored L	oadcase) —						
Controlling Analysis Load: BUCKLING	Nx, ex	Ny, εγ	Nxy, yxy	Mx, ax	My, xy	Mxy, xxy	Qx	Qy
Virtual Loads								
Design-to Loads								
Design-to Deformation	0	0	0	0	0	0		

-
-

What will the loads look like?

 \rightarrow

Positive, negative or zero?

-Input (Per Load Case)								
! II TIMATE THERMAL Load Case	#1 "one" (Mech	anical Set #101	Thermal Set #	201)				-
C Mechanical Load Set #101 "Load	"I One (Meen	annear Set #101,	Thermal Set #	201)	Pef Temp	100	Temp	200
Thermal Load Set #201 "Load Set	201"				Pressure	100	TGrad	200
C FEA Loads - Projects Only	Nx.ex	NV EV	Nxv. yxv	Mx ax	My av	Mxy axy	Ox	OV OV
User Loads Applied Unit Value	Constraine -	Free 💌	Free	Free -	Free 💌	Free 💌	Load 💌	Load 🔻
For Strength Analysis								<u> </u>
For Buckling Analysis								

 Free Body Diagram Output (Control 	ling Factored	Loadcase)						
Controlling Analysis Load: BUCKLING	Nx, ex	Ny, εγ	Nxy, xxy	Mx, xx	Му, ху	Mxy, xxy	Qx	Qy
Virtual Loads	-1200	0	0	0	0	0	0	0
Design-to Loads	-1200	0	0	0	0	0	0	0
Design-to Deformation	-0.0012	3.599999E-04	0	0	0	0		
			•	•	•			

ULTIMATE-THERMAL Load Case #1 "one" (Mechanical Set #101, Thermal Set #201) Mechanical Load Set #101 "Load Set 101" Ref Temp 100 Temp 200 Thermal Load Set #201 "Load Set 201" Pressure TI Grad 0 FEA Loads - Projects Only Nx, ex Ny, ey Ny<
C Mechanical Load Set #101 "Load Set 101" Ref Temp 100 Temp 200 C Thermal Load Set #201 "Load Set 201" Pressure TT Grad 0 C FEA Loads - Projects Only Nx,ex Ny,ey Nx,ex My,ey Mxy,exy Qx Qy
• Thermal Load Set #201 "Load Set 201" Pressure TI Grad • FEA Loads - Projects Only Nx, ex Nxy, yxy Mx, ex Mxy, ex Qy
C FEA Loads - Projects Only Nx, ex Ny, ey Nxy, yxy Mx, ex My, ey Qy
China a Analisetta Natura Constanting - Free
(• User Loads Applied Unit Value Constraine Free Free
For Strength Analysis
For Buckling Analysis

Thermal Strain

$$\varepsilon_x^T = \varepsilon_y^T = \alpha \Delta T$$
$$= (12 \times 10^{-6})(100)$$
$$= 0.0012$$

Free Body Diagram Output (Control	ling Factored L	.oadcase) ———						
Controlling Analysis Load: BUCKLING	Nx, ex	Ny,εy	Nxy, yxy	Mx, xx	My, xy	Mxy, xxy	Qx	Qy
Virtual Loads	-1200	0	0	0	0	0	0	0
Design-to Loads	-1200	0	0	0	0	0	0	0
Design-to Deformation	-0.0012	3.599999E-04	0	0	0	0		

– Input (Per Load Case)								
ULTIMATE-THERMAL Load Case	#1 "one" (Mech	anical Set #101,	, Thermal Set #2	201)				•
C Mechanical Load Set #101 "Load	Set 101"				Ref Temp	100	Temp	200
Thermal Load Set #201 "Load Set	201"				Pressure		TT Grad	0
C FEA Loads - Projects Only	Nx, ex	Ny, εγ	Nxy, yxy	Мх, ах	My, xy	Mxy, xxy	Qx	Qy
Oser Loads Applied Unit Value	Constraine 🔻	Free 💌	Free 💌	Free 💌	Free 💌	Free 💌	Load 🔹	Load 💌
For Strength Analysis								
For Buckling Analysis								

$$\varepsilon_x^T = \varepsilon_y^T = \alpha \Delta T$$
$$= (12 \times 10^{-6})(100)$$
$$= 0.0012$$

Strain Actual (Computed Properties Tab)

$$\varepsilon_{y}^{Actual} = \varepsilon_{y}^{T} + v\varepsilon_{x}^{T}$$
$$= 0.00156$$

 Free Body Diagram Output (Control 	ling Factored	Loadcase) ——						
Controlling Analysis Load: BUCKLING	Nx, ex	Ny, εγ	Nxy, xxy	Mx, xx	My, xy	Mxy, xxy	Qx	Qy
Virtual Loads	-1200	0	0	0	0	0	0	0
Design-to Loads	-1200	0	0	0	0	0	0	0
Design-to Deformation	-0.0012	3.599999E-04	0	0	0	0		

***ULTIMATE-THERMAL** Load Case #1 "one" (Mechanical Set #101, Thermal Set #201) Image: Constraint one" (Mechanical Set #101, Thermal Set #201) C Mechanical Load Set #101 "Load Set 101" Ref Temp 100 Temp 200 (* Thermal Load Set #201 "Load Set 201" Pressure TT Grad 0 C FEA Loads - Projects Only Nx, ex Ny, ey Nxy, yxy Mx, ex My, ey Qy (* User Loads - Applied Unit Value Constraine Free Free Free Load V Load V
C Mechanical Load Set #101 "Load Set 101" Ref Temp 100 Temp 200 Image: Thermal Load Set #201 "Load Set 201" Pressure TT Grad 0 C FEA Loads - Projects Only Nx, ex Ny, ey Nxy, yxy Mx, ex My, ey Mxy, exy Qy C Hear Loads - Applied Unit Value Constraine x Free x Free x Free x Free x Load x Load
Thermal Load Set #201 "Load Set 201" Pressure TT Grad C FEA Loads - Projects Only Nx, ex Ny, ey Nxy, yxy Mx, ex My, ey Mxy, ex Qy Licer Loads - Applied Unit Value Constraine V Free V Fre
C FEA Loads - Projects Only Nx, 6x Ny, 6y Nxy, 7xy Mx, 6x My, 6y Mxy, 6xy Qx Qy
C Urar Load Applied Unit Value Constraine Tree Tree Tree Tree Tree Tree Tree Tr
For Strength Analysis
For Buckling Analysis

$$\varepsilon_x^T = \varepsilon_y^T = \alpha \Delta T$$
$$= (12 \times 10^{-6})(100)$$
$$= 0.0012$$

<u>Strain Actual</u> (Computed Properties Tab)

Design-To Strain

- Free Body Diagram Output (Control	ling Factored L	oadcase) ———						
Controlling Analysis Load: BUCKLING	Nx, ex	Ny,εy	Nxy, yxy	Mx, ax	Му, ху	Mxy, xxy	Qx	Qy
Virtual Loads	-1200	0	0	0	0	0	0	0
Design-to Loads	-1200	0	0	0	0	0	0	0
Design-to Deformation	-0.0012	3.599999E-04	0	0	0	0		
		•	•					

- Input (Per Lond Case)											
!!! TIMATE THERMAL Load Care #1 "one" (Machanical Cat #101, Thermal Cat #201)											
O Mechanical Load Set #101 "Load	Set 101"				Ref Temp	100	Temp	200			
● Thermal Load Set #201 "Load Set 201" Pressure TI Grad 0											
C FEA Loads - Projects Only	Nx, ex	Ny,εy	Nxy, yxy	Mx, ax	Му, ку	Mxy, xxy	Qx	Qy			
Over Loads Applied Unit Value	Constraine 💌	Free 💌	Free 💌	Free 💌	Free 💌	Free 💌	Load 🔹 💌	Load 🗨			
For Strength Analysis											
For Buckling Analysis											
				•	•		•	•			

$$\frac{\text{Thermal Strain}}{\varepsilon_x^T = \varepsilon_y^T = \alpha \Delta T}$$
$$= (12 \times 10^{-6})(100)$$
$$= 0.0012$$

Strain Actual (Computed Properties Tab)

Design-To Strain

T

Design-To Force

λ	$U_x^{Design-To} =$	$A_{11}\varepsilon_x^{Design-To} + A_{12}\varepsilon_y^{Design-To}$
	=(1.0989)	$\times 10^{6}$ $(-0.0012) + (0.3)(1.0989 \times 10^{6})(.00036)$
	=-1200	
	Eres Redu D	is grow Output (Controlling Entered Londerce)

– Free Body Diagram Output (Controlling Factored Loadcase)										
Controlling Analysis Load: BUCKLING	Nx, ex	Νy, εγ	Nxy, yxy	Mx, ax	Му, ку	Mxy, xxy	Qx	Qy		
Virtual Loads	-1200	0	0	0	0	0	0	0		
Design-to Loads	-1200	0	0	0	0	0	0	0		
Design-to Deformation	-0.0012	3.599999E-04	0	0	0	0				

Ex 8 – Thru-Thickness AT, Edges Free

-Input (Per Load Case)						AT = 1000 E	
ULTIMATE-THERMAL Load Case *	$= \Delta I = 1000 \mathrm{F}$	-					
C Mechanical Load Set #101 "Load	Set 101"				Ref Temp 100	Temp	100
Thermal Load Set #201 "Load Set	201"				Pressure	TT Grad	1 1000
C FEA Loads - Projects Only	Nx, ex	Ny,εy	Nxy, yxy	Mx, xx I	My, xy Mxy,	kxy Qx	Qy
Over Loads Applied Unit Value	Free 💌	Free 💌	Free 💌	Free 💌	Free 🗾 Free	Load	▼ Load ▼
For Strength Analysis							
For Buckling Analysis							

What will the strains look like?

Ex 8 – Thru-Thickness AT, Edges Free

→

1	-Input (Per Load Case)												
	ULTIMATE-THERMAL Load Case #1 "one" (Mechanical Set #101, Thermal Set #201)												
	C Mechanical Load Set #101 "Load	Set 101"				Ref Temp	100	Temp	100				
	Thermal Load Set #201 "Load Set	201"				Pressure		TT Grad	1000				
	C FEA Loads - Projects Only	Nx, ex	Ny, sy	Nxy, yxy	Mx, ax	Му, ку	Mxy, xxy	Qx	Qy				
	User Loads Applied Unit Value	Free 💌	Free 💌	Free 💌	Free 💌	Free 💌	Free 💌	Load 💌	Load 💌				
	For Strength Analysis												
	For Buckling Analysis												

	Deformation									
Strain X	-0.0006									
Strain Y	-0.0006									
Curvature X	-0.012									
Curvature Y	-0.012									
Midspan Deflection	1.35									

- Free Body Diagram Output (Control	ling Factored L	oadcase) ———						
Controlling Analysis Load: BUCKLING	Nx, ex	Ny,εy	Nxy, yxy	Mx, xx	My, xy	Mxy, xxy	Qx	Qy
Virtual Loads								
Design-to Loads								
Design-to Deformation	0	0	0	0	0	0		
				•				

Ex 9 – Panel Pressure

- Input (Per Load Case)								
LIMIT_MECHANICAL Load Case #	1 "one" (Mecha	anical Set #101	Thermal Set #20)1)				•
Mechanical Load Set #101 "Load	Set 101"		inennar set « ze		Ref Temp		Temp	
C Thermal Load Set #201 "Load Set	201"				Pressure	100	TT Grad	
C FEA Loads - Projects Only	Nx.ex	Νν, εν	Nxy, yxy	Mx, ax	My. av	MXV, IXV	UX VX	Ov
User Loads Applied Unit Value	Free 💌	Free 💌	Free 💌	Free 💌	Free 💌	Free 💌	Load 💌	Load 💌
For Strength Analysis								
For Buckling Analysis								

. 🔪

Ex 9 – Panel Pressure

Input (Per Load Case)														
LIMIT-MECHANICAL Load Case #1 "one" (Mechanical Set #101, Thermal Set #201)														
Mechanical Load Set #101 "Load	Set 101"							Ref Temp			Temp			
C Thermal Load Set #201 "Load Set	201"							Pressure	-100		TT Grad			
C FEA Loads - Projects Only	Nx, ex	Ny,εy		Nxy, yxy		Mx, ax		Му, ку	Mxy, xxy		Qx	Q	y	
User Loads Applied Unit Value	Free	▼ Free	-	Free	-	Free	-	Free 💌	Free	-	Load	▼ Lo	bad	•
For Strength Analysis														
For Buckling Analysis														

Superimp Panel	osed Loads Pressure	Initial	Beam-Column	Moments
Zero C	Out FEA Comput	ed Moments	SIMPLE Bounda	ry Conditior 💌
	Mx	My	Qx	Qy
MidSpan	4309.657	4309.657	0	0
EdgeCntr	0	0	-997.5873	-997.5873

Free Body Diagram Output (Controlling Factored Loadcase)								
Controlling Analysis Load: STRENGTH	Nx, ex	Ny, sy	Nxy, yxy	Mx, xx	My, xy	Mxy, xxy	Qx	Qy
Virtual Loads								
Design-to Loads	0	0	0	4309.66	4309.66	0	0	0
Design-to Deformation	0	0	0	3.620112	3.620112	0		

Panel Edge Loading

Symmetric Honeycomb Sandwich (Note Reference Plane)

Panel Edge Loading

Panel Edge Loading

Unknowns on left, Knowns on right

When coupling HyperSizer with a FEM, the FEA computed forces are imported to compute panel strains and curvatures this way. (At the reference plane)
Specifed Strain

Specifed Load

Virtual Loads

Controlling Analysis Load: STRENGTH	Nx, εx	Νγ, εγ	Νχγ, γχγ	M×, «x	Му, ку	Мху, <i>к</i> ху
Virtual Loads	0	-31	0	0	0	0
Design-to Loads	-100	-31	0	0	0	0
Design-to Deformation	-4.351252E-05	0	0	0	0	0

Virtual Loads

Virtual Loads

Virtual Loads

	Nx, εx	Νγ, εγ	Νχγ, γχγ	Mx, xx	Му, ку	Мху, жху
Applied Unit Value	Load 🗾	Free 🗾	Constrained 💌	Constrained 💌	Constrained 🗾	Constrained 🔽
For Strength Analysis	-100					
For Buckling Analysis	-100					

Controlling Analysis Load: STRENGTH	Nx, εx	Νγ, εγ	Νχγ, γχγ	Mx, ax	Му, ку	Mxy, xxy
Virtual Loads						
Design-to Loads	-100	0	0	0	0	0
Design-to Deformation	-5.212941E-05	1.616012E-05	0	0	0	0

Controlling Analysis Load: STRENGTH	Nx, εx	Νγ, εγ	Νχγ, γχγ	Mx, ax	Му, ку	Мху, жху
Virtual Loads						
Design-to Loads	-100	0	0	0	0	0
Design-to Deformation	-5.212941E-05	1.616012E-05	0	0	0	0

Controlling Analysis Load: STRENGTH	Nx, εx	Νγ, εγ	Νχγ, γχγ	M×, «x	Му, ху	Mxy, xxy
Virtual Loads						
Design-to Loads	-100	0	0	0	0	0
Design-to Deformation	-5.212941E-05	1.616012E-05	0	0	0	0

HyperSizer Failure Analyses

User Input by hand, (typed-in loads). Very convenient interactive tool

User Input by hand, (typed-in loads). Very convenient interactive tool

HyperSizer Failure Analyses

Appendix

Appendix I: ABD of Isotropic Plate

- Reduced stiffness matrix Q
 - Plane stress constitutive equation
 - In-plane properties E, v, & G

$$\begin{bmatrix} \sigma_{1} \\ \sigma_{2} \\ \tau_{12} \end{bmatrix} = \begin{bmatrix} \frac{E}{1-\nu^{2}} & \frac{\nu E}{1-\nu^{2}} & 0 \\ \frac{\nu E}{1-\nu^{2}} & \frac{E}{1-\nu^{2}} & 0 \\ 0 & 0 & G_{12} \end{bmatrix} \begin{bmatrix} \varepsilon_{1} \\ \varepsilon_{2} \\ \gamma_{12} \end{bmatrix} = \mathbf{Q}\vec{\varepsilon}$$

Appendix I: ABD of Isotropic Plate

Integrate Q over the single layer

$$A_{ij} = \sum_{k=1}^{n} Q_{ij} \left(\theta_k \right) \left(h_k - h_{k-1} \right) = Qt$$

$$B_{ij} = \sum_{k=1}^{n} Q_{ij} \left(\theta_{k}\right) \left(h_{k}^{2} - h_{k-1}^{2}\right) / 2 = Q\left(\frac{t^{2}}{4} - \frac{t^{2}}{4}\right) / 2 = 0$$

$$D_{ij} = \sum_{k=1}^{n} Q_{ij} \left(\theta_{k}\right) \left(h_{k}^{3} - h_{k-1}^{3}\right) / 3 = Q \left(\frac{t^{3}}{8} - \frac{t^{3}}{8}\right) / 3 = Q \frac{t^{3}}{12}$$

Appendix I: ABD of Isotropic Plate

Final ABD

$$\begin{bmatrix} N_{x} \\ N_{y} \\ N_{s} \\ M_{x} \\ M_{y} \\ M_{s} \end{bmatrix} = \begin{bmatrix} \frac{Et}{1-v^{2}} & \frac{vEt}{1-v^{2}} & 0 & 0 & 0 & 0 \\ \frac{vEt}{1-v^{2}} & \frac{Et}{1-v^{2}} & 0 & 0 & 0 & 0 \\ 0 & 0 & G_{12}t & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{Et^{3}}{12(1-v^{2})} & \frac{vEt^{3}}{12(1-v^{2})} & 0 \\ 0 & 0 & 0 & \frac{vEt^{3}}{12(1-v^{2})} & \frac{Et^{3}}{12(1-v^{2})} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{G_{12}t^{3}}{12} \end{bmatrix} \begin{bmatrix} \varepsilon_{x}^{o} \\ \varepsilon_{y}^{o} \\ \varepsilon_{x}^{o} \\ \varepsilon_{x}^{o} \\ \varepsilon_{x}^{o} \\ \varepsilon_{x}^{o} \end{bmatrix}$$

Appendix II: Iso Effective Elastic Constants

 Goal is reduce ABD relation of isotropic plate to the forms:

N_x load, N_y free, N_{xy} free, M free

$$\varepsilon_{x} = \frac{N_{x}}{tE_{x}^{eff}}$$
$$\varepsilon_{y} = -v_{xy}^{eff}\varepsilon_{x}$$

Start with isotropic ABD

$$\begin{bmatrix} N_{x} \\ N_{y} \\ N_{s} \\ M_{x} \\ M_{y} \\ M_{s} \end{bmatrix} = \begin{bmatrix} A_{11} & A_{12} & 0 & 0 & 0 & 0 \\ A_{12} & A_{22} & 0 & 0 & 0 & 0 \\ 0 & 0 & A_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & D_{11} & D_{12} & 0 \\ 0 & 0 & 0 & 0 & D_{12} & D_{22} & 0 \\ 0 & 0 & 0 & 0 & 0 & D_{33} \end{bmatrix} \begin{bmatrix} \varepsilon_{x}^{o} \\ \varepsilon_{y}^{o} \\ \gamma_{xy}^{o} \\ \kappa_{x} \\ \kappa_{y} \\ \kappa_{z} \end{bmatrix}$$

Appendix II: Iso Effective Elastic Constants

Invert

$$\begin{bmatrix} \varepsilon_{x}^{o} \\ \varepsilon_{x}^{o} \\ \varepsilon_{y}^{o} \\ \gamma_{xy}^{o} \\ \kappa_{x} \\ \kappa_{y} \\ \kappa_{z} \end{bmatrix} = \begin{bmatrix} \frac{A_{22}}{A_{11}A_{22} - A_{12}^{2}} & \frac{-A_{12}}{A_{11}A_{22} - A_{12}^{2}} & 0 & 0 & 0 \\ \frac{-A_{12}}{A_{11}A_{22} - A_{12}^{2}} & \frac{A_{11}}{A_{11}A_{22} - A_{12}^{2}} & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{A_{33}} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{D_{22}}{-D_{12}^{2} + D_{11}D_{22}} & \frac{-D_{12}}{-D_{12}^{2} + D_{11}D_{22}} & 0 \\ 0 & 0 & 0 & 0 & \frac{-D_{12}}{-D_{12}^{2} + D_{11}D_{22}} & \frac{D_{11}}{-D_{12}^{2} + D_{11}D_{22}} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{D_{33}} \end{bmatrix}$$

Appendix II: Iso Effective Elastic Constants

$$\begin{aligned}
\mathbf{N_x} \text{ load, } \mathbf{N_y} \text{ free, } \mathbf{N_{xy}} \text{ free, } \mathbf{M} \text{ free} & \varepsilon_x^o = \frac{A_{22}}{A_{11}A_{22} - A_{12}^2} N_x \\
&= \frac{N_x}{E_x^{eff}} \\
\varepsilon_y^o = \frac{-A_{12}}{A_{11}A_{22} - A_{12}^2} N_x \\
&= \frac{-A_{12}}{A_{11}A_{22} - A_{12}^2} \frac{A_{11}A_{22} - A_{12}^2}{A_{22}} \varepsilon_x^o \\
&= \frac{-A_{12}}{A_{22}} \varepsilon_x^o \\
&= -V_{xy}^{eff} \varepsilon_x^o
\end{aligned}$$

Inverted ABD – see Appendix II

$$\begin{bmatrix} \varepsilon_{x}^{o} \\ \varepsilon_{y}^{o} \\ \gamma_{xy}^{o} \\ \kappa_{x} \\ \kappa_{y} \\ \kappa_{z} \end{bmatrix} = \begin{bmatrix} \frac{A_{22}}{A_{11}A_{22} - A_{12}^{2}} & \frac{-A_{12}}{A_{11}A_{22} - A_{12}^{2}} & 0 & 0 & 0 \\ \frac{-A_{12}}{A_{11}A_{22} - A_{12}^{2}} & \frac{A_{11}}{A_{11}A_{22} - A_{12}^{2}} & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{A_{33}} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{D_{22}}{-D_{12}^{2} + D_{11}D_{22}} & \frac{-D_{12}}{-D_{12}^{2} + D_{11}D_{22}} & 0 \\ 0 & 0 & 0 & 0 & \frac{-D_{12}}{-D_{12}^{2} + D_{11}D_{22}} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{-D_{12}}{-D_{12}^{2} + D_{11}D_{22}} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{D_{33}} \end{bmatrix} \begin{bmatrix} N_{x} \\ N_{y} \\ N_{y} \\ M_{z} \\ M_{z} \end{bmatrix}$$

Simplify inverse matrix terms

$$A_{11}^{-1} = \frac{A_{22}}{A_{11}A_{22} - A_{12}^2} = \frac{Et}{(Et)^2 - (Etv)^2} = \frac{1 - v^2}{Et(1 - v^2)} = \frac{1}{Et}$$
$$A_{22}^{-1} = \frac{1}{Et}$$
$$A_{12}^{-1} = \frac{-v}{Et}$$
$$A_{33}^{-1} = \frac{1}{Gt}$$

$$\begin{bmatrix} \varepsilon_x^o \\ \varepsilon_y^o \\ \gamma_{xy}^o \\ \kappa_x \\ \kappa_y \\ \kappa_z \\ \kappa_z \end{bmatrix} = \begin{bmatrix} A_{11}^{-1} & A_{12}^{-1} & 0 & 0 & 0 & 0 \\ A_{12}^{-1} & A_{22}^{-1} & 0 & 0 & 0 & 0 \\ 0 & 0 & A_{33}^{-1} & 0 & 0 & 0 \\ 0 & 0 & 0 & D_{11}^{-1} & D_{12}^{-1} & 0 \\ 0 & 0 & 0 & D_{12}^{-1} & D_{22}^{-1} & 0 \\ 0 & 0 & 0 & 0 & 0 & D_{33}^{-1} \end{bmatrix} \begin{bmatrix} N_x \\ N_y \\ N_s \\ M_x \\ M_y \\ M_s \end{bmatrix}$$

Extra

Isotropic Plate Stiffness

Compliance

Isotropic Plate Stiffness

Compliance

Stiffness

Isotropic Plate Stiffness

Compliance

Stiffness

Effective Modulus ($\epsilon_v = 0$ **)**

Convert Stress → **Line Load**

Membrane Coupling Relationships

$$\begin{bmatrix} N_{x} \\ N_{y} \\ N_{xy} \end{bmatrix} = \begin{bmatrix} \frac{Et}{1-\nu^{2}} & \frac{\nu Et}{1-\nu^{2}} & 0 \\ \frac{\nu Et}{1-\nu^{2}} & \frac{Et}{1-\nu^{2}} & 0 \\ 0 & 0 & Gt \end{bmatrix} \begin{bmatrix} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \end{bmatrix} = \begin{bmatrix} \frac{\varepsilon_{x}}{1-\nu} & -\frac{\nu}{Et} & 0 \\ -\frac{\nu}{Et} & \frac{1}{Et} & 0 \\ 0 & 0 & \frac{1}{Gt} \end{bmatrix} \begin{bmatrix} N_{x} \\ N_{y} \\ N_{xy} \end{bmatrix}$$

